
2022/05/05

Math topics 04

About my theory to explore this System

indirectly

!

(05/04/2022)

After writing about my point of view before and after the birth
of this System, and most of you who know about me in Japan
no longer trust this System. As a result, I almost didn't have to
use my theory during my walk.

"

This theory is for exploring
this System indirectly. It's just around the right time, so I'd like
to briefly explain this theory.

"

Actually, when I was listening to the voices of this System's
operators in my head five years ago, I was explaining this
theory. At that time, I was afraid of this System, so I gave it to
this System as a present for the time being.

"

It seemed that
my mentor was in this System. He was teaching to me a lot of
important things at Graduate School of Management, Kyoto
University. So I explained it to him. Now that I think about him,
I feel ambiguous whether he is really my mentor himself.

This theory uses something like the Markov Chain that I
learned when I was assigned to his laboratory at Kyoto
Graduate School (MBA). Simply speaking, the Markov chain
can express a transition of a several-state using probability.

https://neupro-25874.web.app/topicOthersEN15.pdf
https://en.wikipedia.org/wiki/Markov_chain

For example, I'm an actor, so in some places, I was looking at
very conspicuous photos that I wouldn't tell people.

#

 After
that, let's check if this System is disclose it or not. There are
two choices.

At the beginning, I don't know the movement of this System at
all. So, whether this System is leaking that information or not,
both will be 50%. It's the same as flipping a coin.

After that, I will get data such as a talk of a person who saw
this System during a walk. Not everyone talks about that
information. I will extract only stories related to my actions as
much as possible. Next, I will decide the degree of data that is
how much it has its relevance to my actions one by one, and
change the probability of whether this System is leaking that
information or not.

Let's say you get the first piece of data, and if there is a
possibility that this System is leaking that information, it's a
ratio 7:3. In other words, I use this information to update the
ratio 5:5 of information above. Use a matrix to update it. I've
written about "Transformation" using matrices in
mathematical topics before, but here I will use it to update the
information. In the picture below, I updated the vector like this:

https://neupro-25874.web.app/topicMathEN03.pdf

Suppose I get a small dataset such as (Data1) = (0.7, 0.3), (Data2) = (0.9,
0.1), I calculated it from (Yes1, No1) = (0.5, 0.5). So, I'll get (Yes2, No2) =
(0.6, 0.4) and (Yes3, No3) = (0.72, 0.28) respectively.

Also, in the case of the Markov Chain, it is good to multiply a

same matrix, but in my theory, a matrix is different for each
data, so commutative property of this multiplication is always
not available, so if I change the order of the data, the result
will be different.

$

 There is a disadvantage of my theory.

Actually, when I explained it to this System five years ago, I
didn't use formulas for its explanation.

#

 I remember that I
wrote it a little bit of my notebook at that time.

I don't always do its calculations in my head according to my
theory. If I explain it, it's just like that. It might be a good idea
to finally take an average result to compensate for the above
shortcomings.

#

 Maybe there is a different theory of
mathematics that the commutative property of this
multiplication works.

%

https://en.wikipedia.org/wiki/Matrix_multiplication

Keywords: Markov Chain, Probability, Matrix, Linear Algebra, Commutative
Property

Self-reference has a mysterious power!?

%

(03/25/2022)

I was listening to the latest episode of the podcast called
"Breaking Math". There were a lot of interesting stories about
self-reference. Thank you very much.

!

The following is one
modified version of contents from this episode:

The pie chart describes how many parts of the pie chart are
red. In other words, this pie chart is a pie chart that explains
its own chart.

&

I was also able to learn Bootstrapping in the programming
language.

"

Also, there is a recursive function called its
function within the function that often appears in
programming languages.

"

I got to think that a basic mechanism of living organisms
would be as simple as a recursive function. I'll briefly explain it
on Swift Playground and Apple Script referring to an article
called "4 Basic Phases to the Chicken Life Cycle".

"

https://anchor.fm/breakingmathpodcast/episodes/70-1-Episode-70-1-of-Breaking-Math-Podcast-Self-Reference-e1fvjmk
https://en.wikipedia.org/wiki/Self-reference
https://en.wikipedia.org/wiki/Bootstrapping_%28compilers%29
https://en.wikipedia.org/wiki/Recursion_%28computer_science%29
https://cs-tf.com/chicken-life-cycle/

Image from the article

For example, if I express the life cycle of a chicken with four
emojis that is (

'

,

(

,

)

,

*

), I made a chicken function that
displays them one by one from the beginning. Its result was
the image below. Also, with its Apple Script version, I made a
video to display emojis one second at a time.

"

Image about the chicken function and its result

Let's put the chicken function itself in it. I'd like to explain it
simply. Once I run it, it will be called to run while running it. You

https://twitter.com/TakashiTsuruta/status/1517443443047682048

need to be careful here, because if you just put it in it simply,
there is no mechanism for this function to stop, so it will
continue to run. I somehow thought that living organisms are
like this.

Then, I modified this function. It get to stop when it is iterated
5 times. Its result was the image below. Note: you can see
the part of its result.

Also, I made another video with its Apple Script version.

"

Image about the recursive function and the part of its result

https://twitter.com/TakashiTsuruta/status/1517445180835921920

Bonus:

Apple script can make a script read text, so I thought it could
read emojis, so I tried it.

+

In the Apple script, if I change the
word "log" to the word "say", this script can also read emojis.

!

 You can easily do things like some kinds of accessibility
feature.

,

 But, the emojis don't represent exactly the chicken
life cycle.

-

After I found Ron Garcia's tweet via Pikuma's Like on
04/20/2022, and it seemed that its content could be similar
with my thoughts of a basic mechanism of living organisms.
Thank you very much.

!

His tweet is an introduction to a part of a book called
"Effective C", but it was easy to understand by showing
examples of the precaution of for loop in C language.

"

The
following is a quote from an image of his tweet:

Because of wraparound, an unsigned integer expression can
never evaluate to less than 0. It's easy to lose track of this and
implement comparisons that are always true or always false.
For example, the i in the following for loop can never take
on a negative value, so this loop will never terminate:

for (unsigned int i = n; i ›= 0; --1)

This behavior has caused some notable real-world bugs. For
example, all six power-generating systems on a Boeing 787

https://twitter.com/TakashiTsuruta/status/1518110159310303232
https://twitter.com/rg9119/status/1516579719734386689

are managed by a corresponding generator control unit.
Boeing's laboratory testing discovered that an internal
software counter in the generator control unit wraps
around after running continuously for 248 days,
according to the Federal Aviation Administration. This
defect causes all six generator control units on the
engine-mounted generators to enter fail-safe mode at the
same time.
To avoid unplanned behavior (such as having your airplane fall
from the sky), it's important to check for wraparound by using
the limits from ‹limits.h›. You should be careful when
implementing these checks, because it is easy to make
mistakes.

I looked up wraparound a little.

"

An article on "Integer
Overflow Attack and Prevention" was easy to understand.
Thank you very much.

!

The following are quotes from this
article:

Integer overflow, also known as wraparound, occurs when
an arithmetic operation outputs a numeric value that falls
outside allocated memory space or overflows the range of
the given value of the integer. Mostly in all programming
languages, integers values are allocated limited bits of
storage.

For example, we have a 16-bit integer value which may store
an unsigned integer ranging from 0 to 65535, or signed
integer ranging from -32768 to 32767. So, during an
arithmetic operation, if the results require more than the
allocated space (like 65535+1), the compiler may:

https://www.securecoding.com/blog/integer-overflow-attack-and-prevention/

*completely ignore the error caused, or
*abort the program.

Most compilers will ignore the overflow and store unexpected
output or error. This will result in various attacks such buffer
overflow which is the most common attack and leads to
executing malicious programs or privilege escalation.

It was very helpful. Thank you very much.

!

 I remembered
the range of the specified values of integers in programming
languages, But I didn't care about it recently.

$

Keywords: Self-Reference, Pie Chart, Bootstrapping, Recursive Function,
Mechanism, Living Organism, Wraparound, C language, For loop, Boeing
787, Overflow

